Reactions of Trimethylsilyl-heterocyclics with Ti(IV) and Fe(III) Chlorides

SHAM KUMAR VASISHT and VEENA GOYAL

Department of Chemistry, Punjab University, Chandigarh 160014, India

Received October 1, 1979

Trimethylsilyldialkyamines, Me₃SiNRR', are already known to undergo cleavage with titanium-(IV) halides to form dialkylamido derivatives, X_{4-n} -Ti(NRR')_n, where n = 1 or 2 [1]. As a part of our study on metal-nitrogen compounds, we report here the results of reactions of trimethylsilyl-heterocyclics with Ti(IV) and Fe(III) chlorides.

Equimolar reaction of Me₃SiNEt₂ with TiCl₄ in benzene provides titanium(IV)-amido derivative, Cl₃TiNEt₂ and no reduction occurs even under reflux for 12 h. However, 1:1 reactions of trimethylsilvl-heterocyclics, Me₃Si-NR where $R = (CH_2)_4$ or $(CH_2)_5$, with TiCl₄ and FeCl₃ under similar conditions, result in reduction of titanium to the 3+ and iron to 2+ oxidation states with the formation of precipitates of 3TiCl₃·2RNH, (1) and 3FeCl₂· 2RNH, (2), respectively. Compound (1) is very sensitive to oxidation in air whereas (2) is comparatively more stable. Presence of Ti(III) in (1) and Fe(II) in (2) is supported by redox titration against Ce(IV), electronic spectra of (1) showing bands at 460 nm and 410 nm typical of Ti(III) and magnetic moment values of about 4.5 BM in case of (2). This value is lower than the normal value for mononuclear species (4.9 BM) and this arises perhaps because of antiferromagnetic coupling between iron atoms.

Simple cleavage of Si-N bond in case of Me_3 -SiNEt₂ but easy redox reaction with Me_3SiNR excludes the possibility of steric factors playing any significant role because the steric effect of pyrrolidido or piperidido group is in no way greater than diethylamido group. Alternatively it may be supposed that TiCl₄ chlorinates heterocyclic base to give the chloro derivative of the base, Me_3SiCl and TiCl₃. Had it been so, adducts of simple pyrrolidine or piperidine $3TiCl_3 \cdot 2RNH$ would not have resulted from their silyl derivatives. Furthermore, the redox reaction would not be solvent dependent. In fact, it has been observed that the redox reaction in case of Ti takes place only in benzene, toluene or methylene

chloride where a hydrogen radical can be abstracted. An equimolar inixture of Me₃SiNR with TiCl₄ in an aprotic solvent CCl₄does not undergo redox reaction even at reflux temperature but provides an adduct, 3TiCl₄•2Me₃SiNR and a substitution derivative, Cl₃Ti-NR. Even an excess of base or longer refluxing times do not cause redox reaction and instead the adduct undergoes substitution to give, for example, Ti₃Cl₁₁(NC₅H₁₀)·2Me₃SiNC₅H₁₀. This indicates that the solvent may play a role in providing hydrogen radicals in the system. It is expected that free radical RN• may be formed from Me₃SiNR (by the loss of Me₃Si group that may produce intermediates, TiCl₃ and Me₃SiCl) and then RN• interacts with benzene to form RNH (which adds on to TiCl₃ to give TiCl₃ $\cdot 2/3$ RNH) and phenyl radical which may dimerise or polymerise to give higher molecular weight organic polymers. However, FeCl₃ undergoes reduction even in CCl₄ but the product is not well defined and appears to be a mixture. Unlike TiCl₄, FeCl₃ may chlorinate heterocyclic base as it does with many aromatics [2].

Compounds (1) and (2) may be given empirical formulations TiCl₃·2/3RNH and FeCl₂·2/3RNH or $3TiCl_3 \cdot 2RNH$ and $3FeCl_2 \cdot 2RNH$, respectively. These have been mentioned in the latter form as trinuclear species because Ti₃Cl₉·2RNH and Fe₃Cl₆·2RNH units appear to persist as stable entities in all the reaction products. This is supported by 1:2 reactions of TiCl₄ or FeCl₃ with Me₃SiNR. One of the chloro groups in the trinuclear entity is substituted by the silyl-base to form Ti₃Cl₈(NR)·2RNH and Fe₃Cl₅-(NR)·2RNH.

The infrared spectra of the compounds contain bands arising from ν NH, δ NH and others typical of bonded amine and amido groups. Bands attributable to ν Ti-N, ν Ti \leftarrow N and ν Ti-Cl in the far i.r. region are listed in Table I.

All the compounds of Ti(III) and Fe(II) are less volatile, insoluble in nonpolar solvents and only very slightly soluble in nitrobenzene, nitromethane and THF and are thus likely to be polymerised in solid, probably through chlorine-chorine bridging. Their molar conductance values in nitrobenzene indicate their nonelectrolytic behaviour, whereas in DMF iron(II) compounds behave as 1:1 electrolytes and titanium(III) compounds as 1:2 electrolytes. In a basic solvent like DMF, bridging can be broken to give solvated ionic species. With alcohols, they react to form alkoxy derivatives.

On heating *in vacuo*, all titanium(III) compounds liberate a little free base up to about $100^{\circ}/10^{-3}$ torr and then decompose to give a green sublimate Cl_3Ti -NR at about $120^{\circ}/10^{-3}$ torr. The black residue, thus left behind, contains titanium in lower

Compound	Colour	M.P.	₽Ti-CI	$v \to i T^u$	Analytical D	Analytical Data: Found (Calcd.) %	Calcd.) %			
		(Ĵ			W	a	z	С	Н	Amine
3TiCl ₃ •2C ₄ H ₈ NH	Greyish black	140d ^a	380s, 322s	270s	23.9(23.8)	53.4(52.8)	4.9(4.6)	15.4(15.8)	3.5(3.0)	3.5(3.0) 21.8(23.4)
3TiCl3.2C5H10NH	Pinkish brown	130d	380sb, 360s	260s	22.8(22.7)	50.2(50.4)	4.7(4.4)	20.7(18.9)	3.9(3.5)	3.9(3.5) 27.4(26.8)
3FeCl ₂ • 2C ₄ H ₈ NH	Black	122	385s, 365m	270m	31.7(32.0)	40.7(40.8)	5.4(5.4)	17.3(18.4)	3.6(3.4)	ł
3FeCl ₂ · 2C ₅ H ₁₀ NH	Dark brown	113	380s, 310mb	270mb	30.7(30.4)	40.2(38.7)	4.9(5.1)	20.6(21.8)	3.6(4.0)	I
3TiCl4 • 2C4 H8 NSiMe3	Greyish black	1804	350–330vsb	285 w	16.4(16.8)	50.0(49.8)	3.2(3.3)	19.1(19.6)	3.8(4.0)	3.8(4.0) 32.2(33.1)
Ti ₃ Cl ₁₁ (NC ₅ H ₁₀) • 2C ₅ H ₁₀ NSiMe ₃	Brown	1750	380sb, 330sb	280w, 620w*	15.8(15.4)	42.1(41.9)	4.2(4.5)	26.4(27.0)	5.0(5.2)	5.0(5.2) 42.5(42.7)
Ti ₃ Cl ₈ (NC ₄ H ₈)·2C ₄ H ₈ NH	Dirty green	155d	335sb, 320s	290w, 620w*	22.7(22.5)	44.5(44.4)	6.5(6.6)	22.1(22.5)	4.0(4.1)	4.0(4.1) 33.3(33.3)
Ti ₃ Cl ₈ (NC ₅ H ₁₀) • 2C ₅ H ₁₀ NH	Dirty green	208d	375s, 330s	285m, 630m*	20.9(21.1)	41.0(41.6)	5.9(6.2)	26.1(26.4)	4.3(4.7)	4.3(4.7) 38.0(37.4)
Fe ₃ Cl ₅ (NC ₄ H ₈)·2C ₄ H ₈ NH	Light grey	115	380s, 360m	275m, 610m*	30.1(30.1)	32.2(31.9)	6.9(7.5)	25.1(25.9)	4.6(4.7)	ļ

oxidation states. However, iron(II) compounds decompose differently and no amido derivative sublimes out. The compound loses free base in the beginning but then around $160^{\circ}/10^{-3}$ torr it sublimes out base hydrochloride leaving behind a brown residue containing iron(II).

Dichlorobis(cyclopentadienido)titanium(IV) does not react even with an excess of Me_3SiNR at reflux temperature in toluene. Tin(IV) chloride forms simple adducts at room temperature but undergoes reduction at higher temperature. Such reactions and characterisation of reaction products are in progress.

Experimental

All manipulations were done on vacuum line or under dry nitrogen.

Trimethylsilyl amines, prepared by 1:2 reaction of Me₃SiCl with the amine, were purified by fractionation: Me₃SiNEt₂ 70°/120 mm; Me₃SiN-(CH₂)₄ 75°/80 mm; Me₃SiN(CH₂)₅ 89°/80 mm.

Preparation of Compounds

Trimethylsilyl-pyrrolidine (20 mmol) in 20 ml solvent (benzene or toluene) was added dropwise with stirring to TiCl₄ (20 mmol) in 50 ml of solvent. The colour changed from yellow to brown to greenish black and contained a greyish black precipitate of a Ti(III) compound. If the precipitate is separated after stirring at room temperature, the yield of $3TiCl_3 \cdot 2C_4H_8NH$ is low. Normally the mixture was heated for 2 h at 80 °C. The precipitate was isolated, washed with solvent and dried *in vacuo*. The filtrate was evaporated and the greenish black residue either crystallised from benzene or toluene or sublimed at $80^\circ/10^{-3}$ torr, $Cl_3TiNC_4H_8$ (Found: Ti 21.3, Cl 47.2, NC₄H₈ 32.0. Calcd: Ti 21.4, Cl 47.4, NC₄H₈ 31.2%).

Reaction of silyl-piperidine with TiCl₄ under similar conditions shows colour changes from yellow to brown to reddish brown and gives a precipitate of $3TiCl_3 \cdot 2C_5H_{10}NH$ and the reddish brown filtrate on crystallisation or sublimation gives a green compound $Cl_3TiNC_5H_{10}$ (Found: Ti 20.0, Cl 44.1, NC₅-H₁₀ 36.0. Calcd: Ti 20.1, Cl 44.7, NC₅H₁₀ 35.2%).

These reactions if carried out in CCl₄ at reflux temperature for 2 h provide a precipitate of the Ti(IV) compound, Cl₄Ti·2C₄H₈NSiMe₃ and the filtrate yields Cl₃TiNC₄H₈. A slight excess of base over a molar ratio of 1:1 or longer refluxing time (12 h) give a precipitate of Ti₃Cl₁₁(NC₅H₁₀)·2C₅-H₁₀NSiMe₃ and the filtrate yields Cl₃TiNC₅H₁₀.

Reaction of silyl-heterocyclic: TiCl₄ in a molar ratio of 2:1 in benzene at reflux temperature for 4 h yields a precipitate corresponding to $Ti_3Cl_8(NR)$ · 2RNH.

A suspension of $FeCl_3$ in toluene was treated with 1 or 2 mol of Me_3SiNR and the mixture heated in a bath at 80 °C for 4–6 h. A precipitate of $3FeCl_2 \cdot 2RNH$ or $Fe_3Cl_5(NR) \cdot 2RNH$ was isolated.

References

.

- 1 H. Bürger, and H. J. Neese, Z. Anorg. Allg. Chem., 365, 243 and 370, 275 (1969).
- 2 P. Kovacic and N. O. Brace, J. Am. Chem. Soc., 76, 5491 (1954).